Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x/(x+(1-x)*0.851) = 0.87 .
    Question type: Equation
    Solution:Original question:
      x ÷ ( x + (1 x ) ×
851
1000
) =
87
100
     Multiply both sides of the equation by:( x + (1 x ) ×
851
1000
)
      x =
87
100
( x + (1 x ) ×
851
1000
)
    Remove a bracket on the right of the equation::
      x =
87
100
x +
87
100
(1 x ) ×
851
1000
    The equation is reduced to :
      x =
87
100
x +
74037
100000
(1 x )
    Remove a bracket on the right of the equation::
      x =
87
100
x +
74037
100000
× 1
74037
100000
x
    The equation is reduced to :
      x =
87
100
x +
74037
100000
74037
100000
x
    The equation is reduced to :
      x =
12963
100000
x +
74037
100000

    Transposition :
      x
12963
100000
x =
74037
100000

    Combine the items on the left of the equation:
     
87037
100000
x =
74037
100000

    The coefficient of the unknown number is reduced to 1 :
      x =
74037
100000
÷
87037
100000
        =
74037
100000
×
100000
87037
        = 74037 ×
1
87037

    We obtained :
      x =
74037
87037
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.850638



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。