Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (26000-y)/50+(18500-y)/22.8+y/30 = 1200 .
    Question type: Equation
    Solution:Original question:
     (26000 y ) ÷ 50 + (18500 y ) ÷
114
5
+ y ÷ 30 = 1200
    Remove the bracket on the left of the equation:
     Left side of the equation = 26000 ×
1
50
y ×
1
50
+ (18500 y ) ×
5
114
+
1
30
y
                                             = 520 y ×
1
50
+ (18500 y ) ×
5
114
+
1
30
y
                                             = 520 +
1
75
y + (18500 y ) ×
5
114
                                             = 520 +
1
75
y + 18500 ×
5
114
y ×
5
114
                                             = 520 +
1
75
y +
46250
57
y ×
5
114
                                             =
75890
57
29
950
y
    The equation is transformed into :
     
75890
57
29
950
y = 1200

    Transposition :
      -
29
950
y = 1200
75890
57

    Combine the items on the right of the equation:
      -
29
950
y = -
7490
57

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
7490
57
=
29
950
y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
29
950
y =
7490
57

    The coefficient of the unknown number is reduced to 1 :
      y =
7490
57
÷
29
950
        =
7490
57
×
950
29
        =
7490
3
×
50
29

    We obtained :
      y =
374500
87
    This is the solution of the equation.

    Convert the result to decimal form :
      y = 4304.597701



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。