Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation -54.21+12.76x+10.54+16.86(x-1.25) = 0 .
    Question type: Equation
    Solution:Original question:
      -
5421
100
+
319
25
x +
527
50
+
843
50
( x
5
4
) = 0
     Left side of the equation = -
4367
100
+
319
25
x +
843
50
( x
5
4
)
    The equation is transformed into :
      -
4367
100
+
319
25
x +
843
50
( x
5
4
) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = -
4367
100
+
319
25
x +
843
50
x
843
50
×
5
4
                                             = -
4367
100
+
319
25
x +
843
50
x
843
40
                                             = -
12949
200
+
1481
50
x
    The equation is transformed into :
      -
12949
200
+
1481
50
x = 0

    Transposition :
     
1481
50
x = 0 +
12949
200

    Combine the items on the right of the equation:
     
1481
50
x =
12949
200

    The coefficient of the unknown number is reduced to 1 :
      x =
12949
200
÷
1481
50
        =
12949
200
×
50
1481
        =
12949
4
×
1
1481

    We obtained :
      x =
12949
5924
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 2.185854



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。