Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 19062(4064+x) = 236350x+19062(x-436)+23391(4376-x)+28086(5312-x)+29802x .
    Question type: Equation
    Solution:Original question:
     19062(4064 + x ) = 236350 x + 19062( x 436) + 23391(4376 x ) + 28086(5312 x ) + 29802 x
    Remove the bracket on the left of the equation:
     Left side of the equation = 19062 × 4064 + 19062 x
                                             = 77467968 + 19062 x
    The equation is transformed into :
     77467968 + 19062 x = 236350 x + 19062( x 436) + 23391(4376 x ) + 28086(5312 x ) + 29802 x
     Right side of the equation = 266152 x + 19062( x 436) + 23391(4376 x ) + 28086(5312 x )
    The equation is transformed into :
     77467968 + 19062 x = 266152 x + 19062( x 436) + 23391(4376 x ) + 28086(5312 x )
    Remove the bracket on the right of the equation:
     Right side of the equation = 266152 x + 19062 x 19062 × 436 + 23391(4376 x ) + 28086(5312 x )
                                               = 266152 x + 19062 x 8311032 + 23391(4376 x ) + 28086(5312 x )
                                               = 285214 x 8311032 + 23391(4376 x ) + 28086(5312 x )
                                               = 285214 x 8311032 + 23391 × 437623391 x + 28086(5312 x )
                                               = 285214 x 8311032 + 10235901623391 x + 28086(5312 x )
                                               = 261823 x + 94047984 + 28086(5312 x )
                                               = 261823 x + 94047984 + 28086 × 531228086 x
                                               = 261823 x + 94047984 + 14919283228086 x
                                               = 233737 x + 243240816
    The equation is transformed into :
     77467968 + 19062 x = 233737 x + 243240816

    Transposition :
     19062 x 233737 x = 24324081677467968

    Combine the items on the left of the equation:
      - 214675 x = 24324081677467968

    Combine the items on the right of the equation:
      - 214675 x = 165772848

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      - 165772848 = 214675 x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     214675 x = - 165772848

    The coefficient of the unknown number is reduced to 1 :
      x = - 165772848 ÷ 214675
        = - 165772848 ×
1
214675

    We obtained :
      x = -
165772848
214675
    This is the solution of the equation.

    Convert the result to decimal form :
      x = - 772.203787



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。