Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 19062(4064+x) = 236350x+19062(x-436)+23391(4376-x)+14043(5312-x)+29802x .
    Question type: Equation
    Solution:Original question:
     19062(4064 + x ) = 236350 x + 19062( x 436) + 23391(4376 x ) + 14043(5312 x ) + 29802 x
    Remove the bracket on the left of the equation:
     Left side of the equation = 19062 × 4064 + 19062 x
                                             = 77467968 + 19062 x
    The equation is transformed into :
     77467968 + 19062 x = 236350 x + 19062( x 436) + 23391(4376 x ) + 14043(5312 x ) + 29802 x
     Right side of the equation = 266152 x + 19062( x 436) + 23391(4376 x ) + 14043(5312 x )
    The equation is transformed into :
     77467968 + 19062 x = 266152 x + 19062( x 436) + 23391(4376 x ) + 14043(5312 x )
    Remove the bracket on the right of the equation:
     Right side of the equation = 266152 x + 19062 x 19062 × 436 + 23391(4376 x ) + 14043(5312 x )
                                               = 266152 x + 19062 x 8311032 + 23391(4376 x ) + 14043(5312 x )
                                               = 285214 x 8311032 + 23391(4376 x ) + 14043(5312 x )
                                               = 285214 x 8311032 + 23391 × 437623391 x + 14043(5312 x )
                                               = 285214 x 8311032 + 10235901623391 x + 14043(5312 x )
                                               = 261823 x + 94047984 + 14043(5312 x )
                                               = 261823 x + 94047984 + 14043 × 531214043 x
                                               = 261823 x + 94047984 + 7459641614043 x
                                               = 247780 x + 168644400
    The equation is transformed into :
     77467968 + 19062 x = 247780 x + 168644400

    Transposition :
     19062 x 247780 x = 16864440077467968

    Combine the items on the left of the equation:
      - 228718 x = 16864440077467968

    Combine the items on the right of the equation:
      - 228718 x = 91176432

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      - 91176432 = 228718 x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     228718 x = - 91176432

    The coefficient of the unknown number is reduced to 1 :
      x = - 91176432 ÷ 228718
        = - 91176432 ×
1
228718
        = - 45588216 ×
1
114359

    We obtained :
      x = -
45588216
114359
    This is the solution of the equation.

    Convert the result to decimal form :
      x = - 398.641261



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。