Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 25.2×h×1.66+2×31.6×1.29 = [18.4×1.9+19.4×2.9+24×(2.6+h)+15]×0.6-2×31.6×0.78 .
    Question type: Equation
    Solution:Original question:
     
126
5
h ×
83
50
+ 2 ×
158
5
×
129
100
= (
92
5
×
19
10
+
97
5
×
29
10
+ 24(
13
5
+ h ) + 15) ×
3
5
2 ×
158
5
×
39
50
     Left side of the equation =
5229
125
h +
10191
125
    The equation is transformed into :
     
5229
125
h +
10191
125
= (
92
5
×
19
10
+
97
5
×
29
10
+ 24(
13
5
+ h ) + 15) ×
3
5
2 ×
158
5
×
39
50
     Right side of the equation = (
92
5
×
19
10
+
97
5
×
29
10
+ 24(
13
5
+ h ) + 15) ×
3
5
6162
125
    The equation is transformed into :
     
5229
125
h +
10191
125
= (
92
5
×
19
10
+
97
5
×
29
10
+ 24(
13
5
+ h ) + 15) ×
3
5
6162
125
    Remove the bracket on the right of the equation:
     Right side of the equation =
92
5
×
19
10
×
3
5
+
97
5
×
29
10
×
3
5
+ 24(
13
5
+ h ) ×
3
5
+ 15 ×
3
5
6162
125
                                               =
2622
125
+
8439
250
+
72
5
(
13
5
+ h ) + 9
6162
125
                                               =
3609
250
+
72
5
(
13
5
+ h )
                                               =
3609
250
+
72
5
×
13
5
+
72
5
h
                                               =
3609
250
+
936
25
+
72
5
h
                                               =
12969
250
+
72
5
h
    The equation is transformed into :
     
5229
125
h +
10191
125
=
12969
250
+
72
5
h

    Transposition :
     
5229
125
h
72
5
h =
12969
250
10191
125

    Combine the items on the left of the equation:
     
3429
125
h =
12969
250
10191
125

    Combine the items on the right of the equation:
     
3429
125
h = -
7413
250

    The coefficient of the unknown number is reduced to 1 :
      h = -
7413
250
÷
3429
125
        = -
7413
250
×
125
3429
        = -
2471
2
×
1
1143

    We obtained :
      h = -
2471
2286
    This is the solution of the equation.

    Convert the result to decimal form :
      h = - 1.080927



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。