Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 12/2260*(p-100)+12/3513*(100-p) = 2860 .
    Question type: Equation
    Solution:Original question:
     12 ÷ 2260 × ( p 100) + 12 ÷ 3513 × (100 p ) = 2860
     Left side of the equation =
3
565
( p 100) +
4
1171
(100 p )
    The equation is transformed into :
     
3
565
( p 100) +
4
1171
(100 p ) = 2860
    Remove the bracket on the left of the equation:
     Left side of the equation =
3
565
p
3
565
× 100 +
4
1171
(100 p )
                                             =
3
565
p
60
113
+
4
1171
(100 p )
                                             =
3
565
p
60
113
+
4
1171
× 100
4
1171
p
                                             =
3
565
p
60
113
+
400
1171
4
1171
p
                                             =
1253
661615
p
25060
132323
    The equation is transformed into :
     
1253
661615
p
25060
132323
= 2860

    Transposition :
     
1253
661615
p = 2860 +
25060
132323

    Combine the items on the right of the equation:
     
1253
661615
p =
378468840
132323

    The coefficient of the unknown number is reduced to 1 :
      p =
378468840
132323
÷
1253
661615
        =
378468840
132323
×
661615
1253
        =
378468840
1171
×
5855
1253

    We obtained :
      p =
2215935058200
1467263
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。