Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation -0.013 = (x/(-580000)*550219+7313)/550219 .
    Question type: Equation
    Solution:Original question:
      -
13
1000
= ( x ÷ ( - 580000) × 550219 + 7313) ÷ 550219
    Remove a bracket on the right of the equation::
      -
13
1000
= x ÷ ( - 580000) × 550219 ÷ 550219 + 7313 ÷ 550219
    The equation is reduced to :
      -
13
1000
= x ÷ ( - 580000) ×
17749
17749
+
7313
550219
     Multiply both sides of the equation by:( - 580000)
      -
13
1000
( - 580000) = x ×
17749
17749
+
7313
550219
( - 580000)
    Remove a bracket on the left of the equation:
     
13
1000
× 580000 = x ×
17749
17749
+
7313
550219
( - 580000)
    Remove a bracket on the right of the equation::
     
13
1000
× 580000 = x ×
17749
17749
7313
550219
× 580000
    The equation is reduced to :
     7540 = x ×
17749
17749
4241540000
550219

    Transposition :
      -
17749
17749
x = -
4241540000
550219
7540

    Combine the items on the right of the equation:
      -
17749
17749
x = -
8390191260
550219

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
8390191260
550219
=
17749
17749
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
17749
17749
x =
8390191260
550219
        =
8390191260
550219
×
17749
17749

    We obtained :
      x =
8390191260
550219
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 15248.821397



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。