Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x-(x*0.12/2)-113.82-(x*0.001/2)-(x*0.01) = 29836.2 .
    Question type: Equation
    Solution:Original question:
      x ( x ×
3
25
÷ 2)
5691
50
( x ×
1
1000
÷ 2)( x ×
1
100
) =
149181
5
    Remove the bracket on the left of the equation:
     Left side of the equation = x x ×
3
25
÷ 2
5691
50
( x ×
1
1000
÷ 2)( x ×
1
100
)
                                             = x x ×
3
50
5691
50
( x ×
1
1000
÷ 2)( x ×
1
100
)
                                             =
47
50
x
5691
50
( x ×
1
1000
÷ 2)( x ×
1
100
)
                                             =
47
50
x
5691
50
x ×
1
1000
÷ 2( x ×
1
100
)
                                             =
47
50
x
5691
50
x ×
1
2000
( x ×
1
100
)
                                             =
1879
2000
x
5691
50
( x ×
1
100
)
                                             =
1879
2000
x
5691
50
x ×
1
100
                                             =
1859
2000
x
5691
50
    The equation is transformed into :
     
1859
2000
x
5691
50
=
149181
5

    Transposition :
     
1859
2000
x =
149181
5
+
5691
50

    Combine the items on the right of the equation:
     
1859
2000
x =
1497501
50

    The coefficient of the unknown number is reduced to 1 :
      x =
1497501
50
÷
1859
2000
        =
1497501
50
×
2000
1859
        = 1497501 ×
40
1859

    We obtained :
      x =
59900040
1859
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 32221.646046



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。