Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 18-0.5(2v/3+125/3/v-5)(2v/3+125/3/v-5) = v(2v/3+50/3/v-2)-1.25(2v/3+50/3/v-2)(2v/3+50/3/v-2) .
    Question type: Equation
    Solution:Original question:
     18
1
2
(2 v ÷ 3 + 125 ÷ 3 ÷ v 5)(2 v ÷ 3 + 125 ÷ 3 ÷ v 5) = v (2 v ÷ 3 + 50 ÷ 3 ÷ v 2)
5
4
(2 v ÷ 3 + 50 ÷ 3 ÷ v 2)(2 v ÷ 3 + 50 ÷ 3 ÷ v 2)
    Remove a bracket on the left of the equation::
     18
1
2
× 2 v ÷ 3 × (2 v ÷ 3 + 125 ÷ 3 ÷ v 5)
1
2
× 125 ÷ 3 ÷ v × (2 v ÷ 3 + 125 ÷ 3 ÷ v 5) +
1
2
= v (2 v ÷ 3 + 50 ÷ 3 ÷ v 2)
5
4
(2 v ÷ 3 + 50 ÷ 3 ÷ v 2)(2 v ÷ 3 + 50 ÷ 3 ÷ v 2)
    Remove a bracket on the right of the equation::
     18
1
2
× 2 v ÷ 3 × (2 v ÷ 3 + 125 ÷ 3 ÷ v 5)
1
2
× 125 ÷ 3 ÷ v × (2 v ÷ 3 + 125 ÷ 3 ÷ v 5) +
1
2
= v × 2 v ÷ 3 + v × 50 ÷ 3 ÷ v v × 2
5
4
(2 v ÷ 3 + 50 ÷ 3 ÷ v 2)
    The equation is reduced to :
     18
1
3
v (2 v ÷ 3 + 125 ÷ 3 ÷ v 5)
125
6
÷ v × (2 v ÷ 3 + 125 ÷ 3 ÷ v 5) +
5
2
(2 v ÷ 3 + 125 ÷ 3 ÷ v 5) = v ×
2
3
v + v ×
50
3
÷ v v × 2
5
4
(2 v ÷ 3 + 50 ÷ 3 ÷ v 2)(2 v ÷ 3 + 50 ÷ 3 ÷ v 2)
     Multiply both sides of the equation by: v
     18 v
1
3
v (2 v ÷ 3 + 125 ÷ 3 ÷ v 5) v
125
6
(2 v ÷ 3 + 125 ÷ 3 ÷ v 5) +
5
2
(2 v ÷ 3 + 125 ÷ 3 ÷ v 5) v = v ×
2
3
v v + 1 ×
50
3
÷ 1 × v 2 v v
5
4
    Remove a bracket on the left of the equation:
     18 v
1
3
v × 2 v ÷ 3 × v
1
3
v × 125 ÷ 3 = v ×
2
3
v v + 1 ×
50
3
÷ 1 × v 2 v v
5
4
    Remove a bracket on the right of the equation::
     18 v
1
3
v × 2 v ÷ 3 × v
1
3
v × 125 ÷ 3 = v ×
2
3
v v + 1 ×
50
3
÷ 1 × v 2 v v
5
4
    The equation is reduced to :
     18 v
2
9
v v v
125
9
v ÷ v × v +
5
3
v = v ×
2
3
v v +
50
3
v 2 v v
5
6
v (2 v ÷ 3 + 50 ÷ 3 ÷ v 2)
    Remove a bracket on the left of the equation:
     18 v
2
9
v v v
125
9
× 1 ÷ 1 × v +
5
3
v = v ×
2
3
v v +
50
3
v 2 v v
5
6
v (2 v ÷ 3 + 50 ÷ 3 ÷ v 2)
    Remove a bracket on the right of the equation::
     18 v
2
9
v v v
125
9
× 1 ÷ 1 × v +
5
3
v = v ×
2
3
v v +
50
3
v 2 v v
5
6
v × 2
    The equation is reduced to :
     18 v
2
9
v v v
125
9
v +
5
3
v v
125
9
= v ×
2
3
v v +
50
3
v 2 v v
5
9
v v
    The equation is reduced to :
      -
88
9
v
2
9
v v v +
5
3
v v
15625
18
÷ v +
625
6
= v ×
2
3
v v +
50
3
v 2 v v
5
9
v v
     Multiply both sides of the equation by: v
      -
88
9
v v
2
9
v v v v +
5
3
v v v = v ×
2
3
v v v +
50
3
v v 2 v v v
    Remove a bracket on the left of the equation:
      -
88
9
v v
2
9
v v v v +
5
3
v v v = v ×
2
3
v v v +
50
3
v v 2 v v v
    Remove a bracket on the right of the equation::
      -
88
9
v v
2
9
v v v v +
5
3
v v v = v ×
2
3
v v v +
50
3
v v 2 v v v
    The equation is reduced to :
      -
88
9
v v
2
9
v v v v +
5
3
v v v = v ×
2
3
v v v +
50
3
v v 2 v v v
    Remove a bracket on the right of the equation::
      -
88
9
v v
2
9
v v v v +
5
3
v v v = v ×
2
3
v v v +
50
3
v v 2 v v v
    The equation is reduced to :
      -
88
9
v v
2
9
v v v v +
5
3
v v v = v ×
2
3
v v v +
50
3
v v 2 v v v
    The equation is reduced to :
      -
88
9
v v
2
9
v v v v +
5
3
v v v = v ×
2
3
v v v +
50
3
v v 2 v v v

    The solution of the equation:
        v1≈5.202377 , keep 6 decimal places
        v2≈6.230776 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。