Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (0.8-0.02x2)x(2-0.02)+(10-0.02x2)x(2.1-0.02)x14+(0.9-0.02)x2x(21-0.02)x8+(1.5-0.02x2)x2+(2.4-0.02x2)x(3.0-0.02) = 0 .
    Question type: Equation
    Solution:Original question:
     (
4
5
1
50
x × 2) x (2
1
50
) + (10
1
50
x × 2) x (
21
10
1
50
) x × 14 + (
9
10
1
50
) x × 2 x = 0
     Left side of the equation = (
4
5
1
50
x × 2) x (2
1
50
) + (10
1
50
x × 2) x (
21
10
1
50
) x × 14 + (
9
10
1
50
) x × 16 x
    The equation is transformed into :
     (
4
5
1
50
x × 2) x (2
1
50
) + (10
1
50
x × 2) x (
21
10
1
50
) x × 14 + (
9
10
1
50
) x × 16 x = 0
    Remove the bracket on the left of the equation:
     Left side of the equation =
4
5
x (2
1
50
)
1
50
x × 2 x (2
1
50
) + (10
1
50
x × 2) x (
21
10
1
50
) x
                                             =
4
5
x (2
1
50
)
1
25
x x (2
1
50
) + (10
1
50
x × 2) x (
21
10
1
50
) x × 14
                                             =
4
5
x × 2
4
5
x ×
1
50
1
25
x x (2
1
50
) + (10
1
50
x × 2) x
                                             =
8
5
x
2
125
x
1
25
x x (2
1
50
) + (10
1
50
x × 2) x (
21
10
1
50
) x
                                             =
198
125
x
1
25
x x (2
1
50
) + (10
1
50
x × 2) x (
21
10
1
50
) x × 14 + (
9
10
1
50
)
                                             =
198
125
x
1
25
x x × 2 +
1
25
x x ×
1
50
+ (10
1
50
x × 2) x
                                             =
198
125
x
2
25
x x +
1
1250
x x + (10
1
50
x × 2) x (
21
10
1
50
) x
                                             =
198
125
x
2
25
x x +
1
1250
x x + 10 x (
21
10
1
50
) x
                                             =
198
125
x
2
25
x x +
1
1250
x x + 140 x (
21
10
1
50
) x
                                             =
198
125
x
2
25
x x +
1
1250
x x + 140 x ×
21
10
x
                                             =
198
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
198
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
198
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
198
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
198
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
198
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
198
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
198
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
198
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
198
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
198
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
573
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5
                                             =
573
125
x
2
25
x x +
1
1250
x x + 294 x x
14
5

    the solutions is:
        x≈-0.946607 , keep 6 decimal places
    
    There are 1 solution(s).


解方程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。