Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (b+2)(b+2)-4(6-b) = 0 .
    Question type: Equation
    Solution:Original question:
     ( b + 2)( b + 2)4(6 b ) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = b ( b + 2) + 2( b + 2)4(6 b )
                                             = b b + b × 2 + 2( b + 2)4(6 b )
                                             = b b + 2 b + 2 b + 2 × 24(6 b )
                                             = b b + 2 b + 2 b + 44(6 b )
                                             = b b + 4 b + 44(6 b )
                                             = b b + 4 b + 44 × 6 + 4 b
                                             = b b + 4 b + 424 + 4 b
                                             = b b + 8 b 20
    The equation is transformed into :
      b b + 8 b 20 = 0

    After the equation is converted into a general formula, it is converted into:
    ( b + 10 )( b - 2 )=0
    From
        b + 10 = 0
        b - 2 = 0

    it is concluded that::
        b1=-10
        b2=2
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。