Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (26.448+x)×2.55 = 52.895+72.643-x .
    Question type: Equation
    Solution:Original question:
     (
3306
125
+ x ) ×
51
20
=
10579
200
+
72643
1000
x
    Remove the bracket on the left of the equation:
     Left side of the equation =
3306
125
×
51
20
+ x ×
51
20
                                             =
84303
1250
+ x ×
51
20
    The equation is transformed into :
     
84303
1250
+
51
20
x =
10579
200
+
72643
1000
x
     Right side of the equation =
62769
500
x
    The equation is transformed into :
     
84303
1250
+
51
20
x =
62769
500
x

    Transposition :
     
51
20
x + x =
62769
500
84303
1250

    Combine the items on the left of the equation:
     
71
20
x =
62769
500
84303
1250

    Combine the items on the right of the equation:
     
71
20
x =
145239
2500

    The coefficient of the unknown number is reduced to 1 :
      x =
145239
2500
÷
71
20
        =
145239
2500
×
20
71
        =
145239
125
×
1
71

    We obtained :
      x =
145239
8875
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 16.364958



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。