Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.313*(f+f-0.18)+1.341*(f-0.18+f-11.28)+6.560*(f-11.28+f-15.00) = 6*140*195*2/1000 .
    Question type: Equation
    Solution:Original question:
     
313
1000
( f + f
9
50
) +
1341
1000
( f
9
50
+ f
282
25
) +
164
25
( f
282
25
+ f 15) = 6 × 140 × 195 × 2 ÷ 1000
    Remove the bracket on the left of the equation:
     Left side of the equation =
313
1000
f +
313
1000
f
313
1000
×
9
50
+
1341
1000
( f
9
50
+ f
282
25
) +
164
25
( f
282
25
+ f 15)
                                             =
313
1000
f +
313
1000
f
2817
50000
+
1341
1000
( f
9
50
+ f
282
25
) +
164
25
( f
282
25
+ f 15)
                                             =
313
500
f
2817
50000
+
1341
1000
( f
9
50
+ f
282
25
) +
164
25
( f
282
25
+ f 15)
                                             =
313
500
f
2817
50000
+
1341
1000
f
1341
1000
×
9
50
+
1341
1000
f
1341
1000
×
282
25
+
164
25
                                             =
313
500
f
2817
50000
+
1341
1000
f
12069
50000
+
1341
1000
f
189081
12500
+
164
25
( f
282
25
+ f 15)
                                             =
827
250
f
77121
5000
+
164
25
( f
282
25
+ f 15)
                                             =
827
250
f
77121
5000
+
164
25
f
164
25
×
282
25
+
164
25
f
164
25
× 15
                                             =
827
250
f
77121
5000
+
164
25
f
46248
625
+
164
25
f
492
5
                                             =
4107
250
f
187821
1000
    The equation is transformed into :
     
4107
250
f
187821
1000
= 6 × 140 × 195 × 2 ÷ 1000
     Right side of the equation =
1638
5
    The equation is transformed into :
     
4107
250
f
187821
1000
=
1638
5

    Transposition :
     
4107
250
f =
1638
5
+
187821
1000

    Combine the items on the right of the equation:
     
4107
250
f =
515421
1000

    The coefficient of the unknown number is reduced to 1 :
      f =
515421
1000
÷
4107
250
        =
515421
1000
×
250
4107
        =
171807
4
×
1
1369

    We obtained :
      f =
171807
5476
    This is the solution of the equation.

    Convert the result to decimal form :
      f = 31.374543



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。