Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation ((X-13.5)*200+500)(X-2.5) = 9100 .
    Question type: Equation
    Solution:Original question:
     (( X
27
2
) × 200 + 500)( X
5
2
) = 9100
    Remove the bracket on the left of the equation:
     Left side of the equation = ( X
27
2
) × 200( X
5
2
) + 500( X
5
2
)
                                             = X × 200( X
5
2
)
27
2
× 200( X
5
2
) + 500( X
5
2
)
                                             = X × 200( X
5
2
)2700( X
5
2
) + 500( X
5
2
)
                                             = X × 200 X X × 200 ×
5
2
2700( X
5
2
) + 500( X
5
2
)
                                             = X × 200 X X × 5002700( X
5
2
) + 500( X
5
2
)
                                             = X × 200 X 500 X 2700 X + 2700 ×
5
2
+ 500( X
5
2
)
                                             = X × 200 X 500 X 2700 X + 6750 + 500( X
5
2
)
                                             = X × 200 X 3200 X + 6750 + 500( X
5
2
)
                                             = X × 200 X 3200 X + 6750 + 500 X 500 ×
5
2
                                             = X × 200 X 3200 X + 6750 + 500 X 1250
                                             = X × 200 X 2700 X + 5500
    The equation is transformed into :
      X × 200 X 2700 X + 5500 = 9100

    The solution of the equation:
        X1≈-1.222609 , keep 6 decimal places
        X2≈14.722609 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。