Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 37646.4 = [(260+220+220)*66-x]*0.85+(8+18)*66 .
    Question type: Equation
    Solution:Original question:
     
188232
5
= ((260 + 220 + 220) × 66 x ) ×
17
20
+ (8 + 18) × 66
    Remove the bracket on the right of the equation:
     Right side of the equation = (260 + 220 + 220) × 66 ×
17
20
x ×
17
20
+ (8 + 18) × 66
                                               = (260 + 220 + 220) ×
561
10
x ×
17
20
+ (8 + 18) × 66
                                               = 260 ×
561
10
+ 220 ×
561
10
+ 220 ×
561
10
17
20
x + (8 + 18) × 66
                                               = 14586 + 12342 + 12342
17
20
x + (8 + 18) × 66
                                               = 39270
17
20
x + (8 + 18) × 66
                                               = 39270
17
20
x + 8 × 66 + 18 × 66
                                               = 39270
17
20
x + 528 + 1188
                                               = 40986
17
20
x
    The equation is transformed into :
     
188232
5
= 40986
17
20
x

    Transposition :
     
17
20
x = 40986
188232
5

    Combine the items on the right of the equation:
     
17
20
x =
16698
5

    The coefficient of the unknown number is reduced to 1 :
      x =
16698
5
÷
17
20
        =
16698
5
×
20
17
        = 16698 ×
4
17

    We obtained :
      x =
66792
17
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 3928.941176



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。