Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.45*11*a+(0.45+0.36)/2*11*(8-a) = 34.98 .
    Question type: Equation
    Solution:Original question:
     
9
20
× 11 a + (
9
20
+
9
25
) ÷ 2 × 11(8 a ) =
1749
50
     Left side of the equation =
99
20
a + (
9
20
+
9
25
) ×
11
2
(8 a )
    The equation is transformed into :
     
99
20
a + (
9
20
+
9
25
) ×
11
2
(8 a ) =
1749
50
    Remove the bracket on the left of the equation:
     Left side of the equation =
99
20
a +
9
20
×
11
2
(8 a ) +
9
25
×
11
2
(8 a )
                                             =
99
20
a +
99
40
(8 a ) +
99
50
(8 a )
                                             =
99
20
a +
99
40
× 8
99
40
a +
99
50
(8 a )
                                             =
99
20
a +
99
5
99
40
a +
99
50
(8 a )
                                             =
99
40
a +
99
5
+
99
50
(8 a )
                                             =
99
40
a +
99
5
+
99
50
× 8
99
50
a
                                             =
99
40
a +
99
5
+
396
25
99
50
a
                                             =
99
200
a +
891
25
    The equation is transformed into :
     
99
200
a +
891
25
=
1749
50

    Transposition :
     
99
200
a =
1749
50
891
25

    Combine the items on the right of the equation:
     
99
200
a = -
33
50

    The coefficient of the unknown number is reduced to 1 :
      a = -
33
50
÷
99
200
        = -
33
50
×
200
99
        = - 1 ×
4
3

    We obtained :
      a = -
4
3
    This is the solution of the equation.

    Convert the result to decimal form :
      a = - 1.333333



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。