Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 29 = 25+(x-22)(0.064+0.105+0.06)+0.5*0.7 .
    Question type: Equation
    Solution:Original question:
     29 = 25 + ( x 22)(
8
125
+
21
200
+
3
50
) +
1
2
×
7
10
     Right side of the equation = 25 + ( x 22)(
8
125
+
21
200
+
3
50
) +
7
20
                                               =
507
20
+ ( x 22)(
8
125
+
21
200
+
3
50
)
    The equation is transformed into :
     29 =
507
20
+ ( x 22)(
8
125
+
21
200
+
3
50
)
    Remove the bracket on the right of the equation:
     Right side of the equation =
507
20
+ x (
8
125
+
21
200
+
3
50
)22(
8
125
+
21
200
+
3
50
)
                                               =
507
20
+ x ×
8
125
+ x ×
21
200
+ x ×
3
50
22(
8
125
+
21
200
+
3
50
)
                                               =
507
20
+
229
1000
x 22(
8
125
+
21
200
+
3
50
)
                                               =
507
20
+
229
1000
x 22 ×
8
125
22 ×
21
200
22 ×
3
50
                                               =
507
20
+
229
1000
x
176
125
231
100
33
25
                                               =
2539
125
+
229
1000
x
    The equation is transformed into :
     29 =
2539
125
+
229
1000
x

    Transposition :
      -
229
1000
x =
2539
125
29

    Combine the items on the right of the equation:
      -
229
1000
x = -
1086
125

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
1086
125
=
229
1000
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
229
1000
x =
1086
125

    The coefficient of the unknown number is reduced to 1 :
      x =
1086
125
÷
229
1000
        =
1086
125
×
1000
229
        = 1086 ×
8
229

    We obtained :
      x =
8688
229
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 37.938865



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。