Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 30 = 22+(x-22)(0.064+0.105+0.06)+50*0.7 .
    Question type: Equation
    Solution:Original question:
     30 = 22 + ( x 22)(
8
125
+
21
200
+
3
50
) + 50 ×
7
10
     Right side of the equation = 22 + ( x 22)(
8
125
+
21
200
+
3
50
) + 35
                                               = 57 + ( x 22)(
8
125
+
21
200
+
3
50
)
    The equation is transformed into :
     30 = 57 + ( x 22)(
8
125
+
21
200
+
3
50
)
    Remove the bracket on the right of the equation:
     Right side of the equation = 57 + x (
8
125
+
21
200
+
3
50
)22(
8
125
+
21
200
+
3
50
)
                                               = 57 + x ×
8
125
+ x ×
21
200
+ x ×
3
50
22(
8
125
+
21
200
+
3
50
)
                                               = 57 +
229
1000
x 22(
8
125
+
21
200
+
3
50
)
                                               = 57 +
229
1000
x 22 ×
8
125
22 ×
21
200
22 ×
3
50
                                               = 57 +
229
1000
x
176
125
231
100
33
25
                                               =
25981
500
+
229
1000
x
    The equation is transformed into :
     30 =
25981
500
+
229
1000
x

    Transposition :
      -
229
1000
x =
25981
500
30

    Combine the items on the right of the equation:
      -
229
1000
x =
10981
500

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      -
10981
500
=
229
1000
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
229
1000
x = -
10981
500

    The coefficient of the unknown number is reduced to 1 :
      x = -
10981
500
÷
229
1000
        = -
10981
500
×
1000
229
        = - 10981 ×
2
229

    We obtained :
      x = -
21962
229
    This is the solution of the equation.

    Convert the result to decimal form :
      x = - 95.90393



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。