Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (0.994-x)*300+(0.818-0.790)*300+(0.819-0.790)*300+0.1+0.1+0.2+0.2 = (0.994-0.769)*300+0.1 .
    Question type: Equation
    Solution:Original question:
     (
497
500
x ) × 300 + (
409
500
79
100
) × 300 + (
819
1000
79
100
) × 300 +
1
10
+
1
10
+
1
5
+
1
5
= (
497
500
769
1000
) × 300 +
1
10
     Left side of the equation = (
497
500
x ) × 300 + (
409
500
79
100
) × 300 + (
819
1000
79
100
) × 300 +
3
5
    The equation is transformed into :
     (
497
500
x ) × 300 + (
409
500
79
100
) × 300 + (
819
1000
79
100
) × 300 +
3
5
= (
497
500
769
1000
) × 300 +
1
10
    Remove the bracket on the left of the equation:
     Left side of the equation =
497
500
× 300 x × 300 + (
409
500
79
100
) × 300 + (
819
1000
79
100
) × 300 +
3
5
                                             =
1491
5
x × 300 + (
409
500
79
100
) × 300 + (
819
1000
79
100
) × 300 +
3
5
                                             =
1494
5
300 x + (
409
500
79
100
) × 300 + (
819
1000
79
100
) × 300
                                             =
1494
5
300 x +
409
500
× 300
79
100
× 300 + (
819
1000
79
100
) × 300
                                             =
1494
5
300 x +
1227
5
237 + (
819
1000
79
100
) × 300
                                             =
1536
5
300 x + (
819
1000
79
100
) × 300
                                             =
1536
5
300 x +
819
1000
× 300
79
100
× 300
                                             =
1536
5
300 x +
2457
10
237
                                             =
3159
10
300 x
    The equation is transformed into :
     
3159
10
300 x = (
497
500
769
1000
) × 300 +
1
10
    Remove the bracket on the right of the equation:
     Right side of the equation =
497
500
× 300
769
1000
× 300 +
1
10
                                               =
1491
5
2307
10
+
1
10
                                               =
338
5
    The equation is transformed into :
     
3159
10
300 x =
338
5

    Transposition :
      - 300 x =
338
5
3159
10

    Combine the items on the right of the equation:
      - 300 x = -
2483
10

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
2483
10
= 300 x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     300 x =
2483
10

    The coefficient of the unknown number is reduced to 1 :
      x =
2483
10
÷ 300
        =
2483
10
×
1
300

    We obtained :
      x =
2483
3000
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.827667



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。