Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (70-28)/(28-56) = (70-T)/(T-56) .
    Question type: Equation
    Solution:Original question:
     (7028) ÷ (2856) = (70 T ) ÷ ( T 56)
     Multiply both sides of the equation by:(2856) ,  ( T 56)
     (7028)( T 56) = (70 T )(2856)
    Remove a bracket on the left of the equation::
     70( T 56)28( T 56) = (70 T )(2856)
    Remove a bracket on the right of the equation::
     70( T 56)28( T 56) = 70(2856) T (2856)
    Remove a bracket on the left of the equation:
     70 T 70 × 5628( T 56) = 70(2856) T (2856)
    Remove a bracket on the right of the equation::
     70 T 70 × 5628( T 56) = 70 × 2870 × 56 T (2856)
    The equation is reduced to :
     70 T 392028( T 56) = 19603920 T (2856)
    The equation is reduced to :
     70 T 392028( T 56) = - 1960 T (2856)
    Remove a bracket on the left of the equation:
     70 T 392028 T + 28 × 56 = - 1960 T (2856)
    Remove a bracket on the right of the equation::
     70 T 392028 T + 28 × 56 = - 1960 T × 28 + T × 56
    The equation is reduced to :
     70 T 392028 T + 1568 = - 1960 T × 28 + T × 56
    The equation is reduced to :
     42 T 2352 = - 1960 + 28 T

    Transposition :
     42 T 28 T = - 1960 + 2352

    Combine the items on the left of the equation:
     14 T = - 1960 + 2352

    Combine the items on the right of the equation:
     14 T = 392

    The coefficient of the unknown number is reduced to 1 :
      T = 392 ÷ 14
        = 392 ×
1
14
        = 28 × 1

    We obtained :
      T = 28
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。