Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 13162.619+(y-y*0.825)/1.05*0.05 = y .
    Question type: Equation
    Solution:Original question:
     
13162619
1000
+ ( y y ×
33
40
) ÷
21
20
×
1
20
= y
     Left side of the equation =
13162619
1000
+ ( y y ×
33
40
) ×
1
21
    The equation is transformed into :
     
13162619
1000
+ ( y y ×
33
40
) ×
1
21
= y
    Remove the bracket on the left of the equation:
     Left side of the equation =
13162619
1000
+ y ×
1
21
y ×
33
40
×
1
21
                                             =
13162619
1000
+ y ×
1
21
y ×
11
280
                                             =
13162619
1000
+
1
120
y
    The equation is transformed into :
     
13162619
1000
+
1
120
y = y

    Transposition :
     
1
120
y y = -
13162619
1000

    Combine the items on the left of the equation:
     
119
120
y = -
13162619
1000

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
13162619
1000
=
119
120
y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
119
120
y =
13162619
1000

    The coefficient of the unknown number is reduced to 1 :
      y =
13162619
1000
÷
119
120
        =
13162619
1000
×
120
119
        =
13162619
25
×
3
119

    We obtained :
      y =
39487857
2975
    This is the solution of the equation.

    Convert the result to decimal form :
      y = 13273.229244



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。