Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (670560.00+x)*(1+0.12+0.1+0.007+0.003)+295300 = 2716542.98 .
    Question type: Equation
    Solution:Original question:
     (670560 + x )(1 +
3
25
+
1
10
+
7
1000
+
3
1000
) + 295300 =
135827149
50
    Remove the bracket on the left of the equation:
     Left side of the equation = 670560(1 +
3
25
+
1
10
+
7
1000
+
3
1000
) + x (1 +
3
25
+
1
10
+
7
1000
+
3
1000
) + 295300
                                             = 670560 × 1 + 670560 ×
3
25
+ 670560 ×
1
10
+ 670560 ×
7
1000
+ 670560 ×
3
1000
+ x (1 +
3
25
+
1
10
+
7
1000
+
3
1000
)
                                             = 670560 +
402336
5
+ 67056 +
117348
25
+
50292
25
+ x (1 +
3
25
+
1
10
+
7
1000
+
3
1000
) + 295300
                                             =
5600444
5
+ x (1 +
3
25
+
1
10
+
7
1000
+
3
1000
)
                                             =
5600444
5
+ x × 1 + x ×
3
25
+ x ×
1
10
+ x ×
7
1000
+ x ×
3
1000
                                             =
5600444
5
+
123
100
x
    The equation is transformed into :
     
5600444
5
+
123
100
x =
135827149
50

    Transposition :
     
123
100
x =
135827149
50
5600444
5

    Combine the items on the right of the equation:
     
123
100
x =
79822709
50

    The coefficient of the unknown number is reduced to 1 :
      x =
79822709
50
÷
123
100
        =
79822709
50
×
100
123
        = 79822709 ×
2
123

    We obtained :
      x =
159645418
123
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 1297930.227642



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。