Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (38-22-x)(160+x/3×120) = 3640 .
    Question type: Equation
    Solution:Original question:
     (3822 x )(160 + x ÷ 3 × 120) = 3640
    Remove the bracket on the left of the equation:
     Left side of the equation = 38(160 + x ÷ 3 × 120)22(160 + x ÷ 3 × 120) x (160 + x ÷ 3 × 120)
                                             = 38 × 160 + 38 x ÷ 3 × 12022(160 + x ÷ 3 × 120) x (160 + x ÷ 3 × 120)
                                             = 6080 + 1520 x 22(160 + x ÷ 3 × 120) x (160 + x ÷ 3 × 120)
                                             = 6080 + 1520 x 22 × 16022 x ÷ 3 × 120 x (160 + x ÷ 3 × 120)
                                             = 6080 + 1520 x 3520880 x x (160 + x ÷ 3 × 120)
                                             = 2560 + 640 x x (160 + x ÷ 3 × 120)
                                             = 2560 + 640 x x × 160 x x ÷ 3 × 120
                                             = 2560 + 640 x x × 160 x x × 40
                                             = 2560 + 480 x x x × 40
    The equation is transformed into :
     2560 + 480 x x x × 40 = 3640

    After the equation is converted into a general formula, it is converted into:
    ( x - 3 )( x - 9 )=0
    From
        x - 3 = 0
        x - 9 = 0

    it is concluded that::
        x1=3
        x2=9
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。