Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 4/2333 = (m/342)÷(((m/342)+((1000-m)/18)) ) .
    Question type: Equation
    Solution:Original question:
     4 ÷ 2333 = ( m ÷ 342) ÷ ((( m ÷ 342) + ((1000 m ) ÷ 18)))
     Multiply both sides of the equation by:((( m ÷ 342) + ((1000 m ) ÷ 18)))
     4 ÷ 2333 × ((( m ÷ 342) + ((1000 m ) ÷ 18))) = ( m ÷ 342)
    Remove a bracket on the left of the equation::
     4 ÷ 2333 × (( m ÷ 342) + ((1000 m ) ÷ 18)) = ( m ÷ 342)
    Remove a bracket on the right of the equation::
     4 ÷ 2333 × (( m ÷ 342) + ((1000 m ) ÷ 18)) = m ÷ 342
    The equation is reduced to :
     
4
2333
(( m ÷ 342) + ((1000 m ) ÷ 18)) = m ×
1
342
    Remove a bracket on the left of the equation:
     
4
2333
( m ÷ 342) +
4
2333
((1000 m ) ÷ 18) =
1
342
m
    Remove a bracket on the left of the equation:
     
4
2333
m ÷ 342 +
4
2333
((1000 m ) ÷ 18) =
1
342
m
    The equation is reduced to :
     
2
398943
m +
4
2333
((1000 m ) ÷ 18) =
1
342
m
    Remove a bracket on the left of the equation:
     
2
398943
m +
4
2333
(1000 m ) ÷ 18 =
1
342
m
    The equation is reduced to :
     
2
398943
m +
2
20997
(1000 m ) =
1
342
m
    Remove a bracket on the left of the equation:
     
2
398943
m +
2
20997
× 1000
2
20997
m =
1
342
m
    The equation is reduced to :
     
2
398943
m +
2000
20997
2
20997
m =
1
342
m
    The equation is reduced to :
      -
9332
103414891
m +
2000
20997
=
1
342
m

    Transposition :
      -
9332
103414891
m
1
342
m = -
2000
20997

    the solutions is:
        m=
√499306279
√500000
    
    There are 1 solution(s).


解方程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。