Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x = (0.6x-5)*0.03+(0.6x-5)*0.97*0.2+180+0.4x .
    Question type: Equation
    Solution:Original question:
      x = (
3
5
x 5) ×
3
100
+ (
3
5
x 5) ×
97
100
×
1
5
+ 180 +
2
5
x
     Right side of the equation = (
3
5
x 5) ×
3
100
+ (
3
5
x 5) ×
97
500
+ 180 +
2
5
x
    The equation is transformed into :
      x = (
3
5
x 5) ×
3
100
+ (
3
5
x 5) ×
97
500
+ 180 +
2
5
x
    Remove the bracket on the right of the equation:
     Right side of the equation =
3
5
x ×
3
100
5 ×
3
100
+ (
3
5
x 5) ×
97
500
+ 180 +
2
5
x
                                               =
9
500
x
3
20
+ (
3
5
x 5) ×
97
500
+ 180 +
2
5
x
                                               =
209
500
x +
3597
20
+ (
3
5
x 5) ×
97
500
                                               =
209
500
x +
3597
20
+
3
5
x ×
97
500
5 ×
97
500
                                               =
209
500
x +
3597
20
+
291
2500
x
97
100
                                               =
334
625
x +
4472
25
    The equation is transformed into :
      x =
334
625
x +
4472
25

    Transposition :
      x
334
625
x =
4472
25

    Combine the items on the left of the equation:
     
291
625
x =
4472
25

    The coefficient of the unknown number is reduced to 1 :
      x =
4472
25
÷
291
625
        =
4472
25
×
625
291
        = 4472 ×
25
291

    We obtained :
      x =
111800
291
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 384.19244



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。