Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 20(1+y)y+40(1+2y)y = 20(1+y)+40(1+2y)+100 .
    Question type: Equation
    Solution:Original question:
     20(1 + y ) y + 40(1 + 2 y ) y = 20(1 + y ) + 40(1 + 2 y ) + 100
    Remove the bracket on the left of the equation:
     Left side of the equation = 20 × 1 y + 20 y y + 40(1 + 2 y ) y
                                             = 20 y + 20 y y + 40(1 + 2 y ) y
                                             = 20 y + 20 y y + 40 × 1 y + 40 × 2 y y
                                             = 20 y + 20 y y + 40 y + 80 y y
                                             = 60 y + 20 y y + 80 y y
    The equation is transformed into :
     60 y + 20 y y + 80 y y = 20(1 + y ) + 40(1 + 2 y ) + 100
    Remove the bracket on the right of the equation:
     Right side of the equation = 20 × 1 + 20 y + 40(1 + 2 y ) + 100
                                               = 20 + 20 y + 40(1 + 2 y ) + 100
                                               = 120 + 20 y + 40(1 + 2 y )
                                               = 120 + 20 y + 40 × 1 + 40 × 2 y
                                               = 120 + 20 y + 40 + 80 y
                                               = 160 + 100 y
    The equation is transformed into :
     60 y + 20 y y + 80 y y = 160 + 100 y

    The solution of the equation:
        y1≈-1.080625 , keep 6 decimal places
        y2≈1.480625 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。