Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 4.3532 = (26.23*0.681*(x+0.1))/(1+0.681(x+0.1))*(100-14.9-0.96)/100*1/(1+0.31*0.96)+(1.45(x+0.1))/(1.36*0.101325) .
    Question type: Equation
    Solution:Original question:
     
10883
2500
= (
2623
100
×
681
1000
( x +
1
10
)) ÷ (1 +
681
1000
( x +
1
10
)) × (100
149
10
24
25
) ÷ 100 × 1 ÷ (1 +
31
100
×
24
25
) + (
29
20
( x +
1
10
)) ÷ (
34
25
×
4053
40000
)
     Multiply both sides of the equation by:(1 +
681
1000
( x +
1
10
))
     
10883
2500
(1 +
681
1000
( x +
1
10
)) = (
2623
100
×
681
1000
( x +
1
10
))(100
149
10
24
25
) ÷ 100 × 1 ÷ (1 +
31
100
×
24
25
) + (
29
20
( x +
1
10
)) ÷ (
34
25
×
4053
40000
) × (1 +
681
1000
( x +
1
10
))
    Remove a bracket on the left of the equation::
     
10883
2500
× 1 +
10883
2500
×
681
1000
( x +
1
10
) = (
2623
100
×
681
1000
( x +
1
10
))(100
149
10
24
25
) ÷ 100 × 1 ÷ (1 +
31
100
×
24
25
) + (
29
20
( x +
1
10
)) ÷ (
34
25
×
4053
40000
) × (1 +
681
1000
( x +
1
10
))
    Remove a bracket on the right of the equation::
     
10883
2500
× 1 +
10883
2500
×
681
1000
( x +
1
10
) =
2623
100
×
681
1000
( x +
1
10
)(100
149
10
24
25
) ÷ 100 × 1 ÷ (1 +
31
100
×
24
25
) + (
29
20
( x +
1
10
)) ÷ (
34
25
×
4053
40000
) × (1 +
681
1000
( x +
1
10
))
    The equation is reduced to :
     
10883
2500
+
7411323
2500000
( x +
1
10
) =
1786263
10000000
( x +
1
10
)(100
149
10
24
25
) ÷ (1 +
31
100
×
24
25
) + (
29
20
( x +
1
10
)) ÷ (
34
25
×
4053
40000
) × (1 +
681
1000
( x +
1
10
))
     Multiply both sides of the equation by:(1 +
31
100
×
24
25
)
     
10883
2500
(1 +
31
100
×
24
25
) +
7411323
2500000
( x +
1
10
)(1 +
31
100
×
24
25
) =
1786263
10000000
( x +
1
10
)(100
149
10
24
25
) + (
29
20
( x +
1
10
)) ÷ (
34
25
×
4053
40000
) × (1 +
681
1000
( x +
1
10
))(1 +
31
100
×
24
25
)
    Remove a bracket on the left of the equation:
     
10883
2500
× 1 +
10883
2500
×
31
100
×
24
25
+
7411323
2500000
( x +
1
10
)(1 +
31
100
×
24
25
) =
1786263
10000000
( x +
1
10
)(100
149
10
24
25
) + (
29
20
( x +
1
10
)) ÷ (
34
25
×
4053
40000
) × (1 +
681
1000
( x +
1
10
))(1 +
31
100
×
24
25
)
    Remove a bracket on the right of the equation::
     
10883
2500
× 1 +
10883
2500
×
31
100
×
24
25
+
7411323
2500000
( x +
1
10
)(1 +
31
100
×
24
25
) =
1786263
10000000
x (100
149
10
24
25
) +
1786263
10000000
×
1
10
(100
149
10
24
25
) + (
29
20
( x +
1
10
)) ÷ (
34
25
×
4053
40000
) × (1 +
681
1000
( x +
1
10
))(1 +
31
100
×
24
25
)
    The equation is reduced to :
     
10883
2500
+
1012119
781250
+
7411323
2500000
( x +
1
10
)(1 +
31
100
×
24
25
) =
1786263
10000000
x (100
149
10
24
25
) +
1786263
100000000
(100
149
10
24
25
) + (
29
20
( x +
1
10
)) ÷ (
34
25
×
4053
40000
) × (1 +
681
1000
( x +
1
10
))(1 +
31
100
×
24
25
)

    The solution of the equation:
        x1≈-1.568429 , keep 6 decimal places
        x2≈0.405123 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。