Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x-(x/1.01*0.01)-(x/1.01*0.01*0.07/2)-{x-(x/1.01*0.01)-(x/1.01*0.01*0.07/2)-800}*0.2 = 2300 .
    Question type: Equation
    Solution:Original question:
      x ( x ÷
101
100
×
1
100
)( x ÷
101
100
×
1
100
×
7
100
÷ 2)( x ( x ÷
101
100
×
1
100
)( x ÷
101
100
×
1
100
×
7
100
÷ 2)800) ×
1
5
= 2300
    Remove the bracket on the left of the equation:
     Left side of the equation = x x ÷
101
100
×
1
100
( x ÷
101
100
×
1
100
×
7
100
÷ 2)( x ( x ÷
101
100
×
1
100
)( x ÷
101
100
×
1
100
×
7
100
÷ 2)800) ×
1
5
                                             = x x ×
1
101
( x ÷
101
100
×
1
100
×
7
100
÷ 2)( x ( x ÷
101
100
×
1
100
)( x ÷
101
100
×
1
100
×
7
100
÷ 2)800) ×
1
5
                                             =
100
101
x ( x ÷
101
100
×
1
100
×
7
100
÷ 2)( x ( x ÷
101
100
×
1
100
)( x ÷
101
100
×
1
100
×
7
100
÷ 2)800) ×
1
5
                                             =
100
101
x x ÷
101
100
×
1
100
×
7
100
÷ 2( x ( x ÷
101
100
×
1
100
)( x ÷
101
100
×
1
100
×
7
100
÷ 2)800) ×
1
5
                                             =
100
101
x x ×
7
20200
( x ( x ÷
101
100
×
1
100
)( x ÷
101
100
×
1
100
×
7
100
÷ 2)800) ×
1
5
                                             =
19993
20200
x ( x ( x ÷
101
100
×
1
100
)( x ÷
101
100
×
1
100
×
7
100
÷ 2)800) ×
1
5
                                             =
19993
20200
x x ×
1
5
+ ( x ÷
101
100
×
1
100
) ×
1
5
+ ( x ÷
101
100
×
1
100
×
7
100
÷ 2) ×
1
5
+ 800 ×
1
5
                                             =
19993
20200
x x ×
1
5
+ ( x ÷
101
100
×
1
100
) ×
1
5
+ ( x ÷
101
100
×
1
100
×
7
100
÷ 2) ×
1
5
+ 160
                                             =
15953
20200
x + ( x ÷
101
100
×
1
100
) ×
1
5
+ ( x ÷
101
100
×
1
100
×
7
100
÷ 2) ×
1
5
+ 160
                                             =
15953
20200
x + x ÷
101
100
×
1
100
×
1
5
+ ( x ÷
101
100
×
1
100
×
7
100
÷ 2) ×
1
5
+ 160
                                             =
15953
20200
x + x ×
1
505
+ ( x ÷
101
100
×
1
100
×
7
100
÷ 2) ×
1
5
+ 160
                                             =
15993
20200
x + ( x ÷
101
100
×
1
100
×
7
100
÷ 2) ×
1
5
+ 160
                                             =
15993
20200
x + x ÷
101
100
×
1
100
×
7
100
÷ 2 ×
1
5
+ 160
                                             =
15993
20200
x + x ×
7
101000
+ 160
                                             =
19993
25250
x + 160
    The equation is transformed into :
     
19993
25250
x + 160 = 2300

    Transposition :
     
19993
25250
x = 2300160

    Combine the items on the right of the equation:
     
19993
25250
x = 2140

    The coefficient of the unknown number is reduced to 1 :
      x = 2140 ÷
19993
25250
        = 2140 ×
25250
19993

    We obtained :
      x =
54035000
19993
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 2702.695944



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。