Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (186+186)/31*x+279/31*(x+15)+124/31(x+30) = 1544 .
    Question type: Equation
    Solution:Original question:
     (186 + 186) ÷ 31 × x + 279 ÷ 31 × ( x + 15) + 124 ÷ 31 × ( x + 30) = 1544
     Left side of the equation = (186 + 186) ×
1
31
x + 9( x + 15) + 4( x + 30)
    The equation is transformed into :
     (186 + 186) ×
1
31
x + 9( x + 15) + 4( x + 30) = 1544
    Remove the bracket on the left of the equation:
     Left side of the equation = 186 ×
1
31
x + 186 ×
1
31
x + 9( x + 15) + 4( x + 30)
                                             = 6 x + 6 x + 9( x + 15) + 4( x + 30)
                                             = 12 x + 9( x + 15) + 4( x + 30)
                                             = 12 x + 9 x + 9 × 15 + 4( x + 30)
                                             = 12 x + 9 x + 135 + 4( x + 30)
                                             = 21 x + 135 + 4( x + 30)
                                             = 21 x + 135 + 4 x + 4 × 30
                                             = 21 x + 135 + 4 x + 120
                                             = 25 x + 255
    The equation is transformed into :
     25 x + 255 = 1544

    Transposition :
     25 x = 1544255

    Combine the items on the right of the equation:
     25 x = 1289

    The coefficient of the unknown number is reduced to 1 :
      x = 1289 ÷ 25
        = 1289 ×
1
25

    We obtained :
      x =
1289
25
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 51.56



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。