( | 186 | + | 565 2 | ) | ÷ | 31 | × | x | + | 176 | ÷ | 31 | × | ( | x | + | 15 | ) | + | 124 | ÷ | 31 | × | ( | x | + | 30 | ) | = | 751 |
Left side of the equation = | ( | 186 | + | 565 2 | ) | × | 1 31 | x | + | 176 31 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
( | 186 | + | 565 2 | ) | × | 1 31 | x | + | 176 31 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) | = | 751 |
Left side of the equation = | 186 | × | 1 31 | x | + | 565 2 | × | 1 31 | x | + | 176 31 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
= | 6 | x | + | 565 62 | x | + | 176 31 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
= | 937 62 | x | + | 176 31 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
= | 937 62 | x | + | 176 31 | x | + | 176 31 | × | 15 | + | 4 | ( | x | + | 30 | ) |
= | 937 62 | x | + | 176 31 | x | + | 2640 31 | + | 4 | ( | x | + | 30 | ) |
= | 1289 62 | x | + | 2640 31 | + | 4 | ( | x | + | 30 | ) |
= | 1289 62 | x | + | 2640 31 | + | 4 | x | + | 4 | × | 30 |
= | 1289 62 | x | + | 2640 31 | + | 4 | x | + | 120 |
= | 1537 62 | x | + | 6360 31 |
1537 62 | x | + | 6360 31 | = | 751 |
1537 62 | x | = | 751 | − | 6360 31 |
1537 62 | x | = | 16921 31 |
x | = | 16921 31 | ÷ | 1537 62 |
= | 16921 31 | × | 62 1537 |
= | 16921 | × | 2 1537 |
x | = | 33842 1537 |
x | = | 22.018217 |