( | 138 | + | 259 | ) | ÷ | 31 | × | x | + | 329 2 | ÷ | 31 | × | ( | x | + | 15 | ) | + | 124 | ÷ | 31 | × | ( | x | + | 30 | ) | = | 1178 |
Left side of the equation = | ( | 138 | + | 259 | ) | × | 1 31 | x | + | 329 62 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
( | 138 | + | 259 | ) | × | 1 31 | x | + | 329 62 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) | = | 1178 |
Left side of the equation = | 138 | × | 1 31 | x | + | 259 | × | 1 31 | x | + | 329 62 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
= | 138 31 | x | + | 259 31 | x | + | 329 62 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
= | 397 31 | x | + | 329 62 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
= | 397 31 | x | + | 329 62 | x | + | 329 62 | × | 15 | + | 4 | ( | x | + | 30 | ) |
= | 397 31 | x | + | 329 62 | x | + | 4935 62 | + | 4 | ( | x | + | 30 | ) |
= | 1123 62 | x | + | 4935 62 | + | 4 | ( | x | + | 30 | ) |
= | 1123 62 | x | + | 4935 62 | + | 4 | x | + | 4 | × | 30 |
= | 1123 62 | x | + | 4935 62 | + | 4 | x | + | 120 |
= | 1371 62 | x | + | 12375 62 |
1371 62 | x | + | 12375 62 | = | 1178 |
1371 62 | x | = | 1178 | − | 12375 62 |
1371 62 | x | = | 60661 62 |
x | = | 60661 62 | ÷ | 1371 62 |
= | 60661 62 | × | 62 1371 |
= | 60661 | × | 1 1371 |
x | = | 60661 1371 |
x | = | 44.245806 |