Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1.2*794/(x+794) = 794/(x*0.68+794) .
    Question type: Equation
    Solution:Original question:
     
6
5
× 794 ÷ ( x + 794) = 794 ÷ ( x ×
17
25
+ 794)
     Multiply both sides of the equation by:( x + 794) ,  ( x ×
17
25
+ 794)
     
6
5
× 794( x ×
17
25
+ 794) = 794( x + 794)
    Remove a bracket on the left of the equation::
     
6
5
× 794 x ×
17
25
+
6
5
× 794 × 794 = 794( x + 794)
    Remove a bracket on the right of the equation::
     
6
5
× 794 x ×
17
25
+
6
5
× 794 × 794 = 794 x + 794 × 794
    The equation is reduced to :
     
80988
125
x +
3782616
5
= 794 x + 630436

    Transposition :
     
80988
125
x 794 x = 630436
3782616
5

    Combine the items on the left of the equation:
      -
18262
125
x = 630436
3782616
5

    Combine the items on the right of the equation:
      -
18262
125
x = -
630436
5

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
630436
5
=
18262
125
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
18262
125
x =
630436
5

    The coefficient of the unknown number is reduced to 1 :
      x =
630436
5
÷
18262
125
        =
630436
5
×
125
18262
        = 315218 ×
25
9131

    We obtained :
      x =
7880450
9131
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 863.043478



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。