4 | = | ( | x | ÷ | ( | x | + | 1 | ) | ) | + | ( | ( | x | + | 1 | ) | ÷ | ( | x | + | 2 | ) | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) |
4 | = | x | ÷ | ( | x | + | 1 | ) | + | ( | ( | x | + | 1 | ) | ÷ | ( | x | + | 2 | ) | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) |
Multiply both sides of the equation by: | ( | x | + | 1 | ) |
4 | ( | x | + | 1 | ) | = | x | + | ( | ( | x | + | 1 | ) | ÷ | ( | x | + | 2 | ) | ) | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) | ( | x | + | 1 | ) |
4 | x | + | 4 | × | 1 | = | x | + | ( | ( | x | + | 1 | ) | ÷ | ( | x | + | 2 | ) | ) | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) | ( | x | + | 1 | ) |
4 | x | + | 4 | × | 1 | = | x | + | ( | x | + | 1 | ) | ÷ | ( | x | + | 2 | ) | × | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) | ( | x | + | 1 | ) |
4 | x | + | 4 | = | x | + | ( | x | + | 1 | ) | ÷ | ( | x | + | 2 | ) | × | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) | ( | x | + | 1 | ) |
Multiply both sides of the equation by: | ( | x | + | 2 | ) |
4 | x | ( | x | + | 2 | ) | + | 4 | ( | x | + | 2 | ) | = | x | ( | x | + | 2 | ) | + | ( | x | + | 1 | ) | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
4 | x | x | + | 4 | x | × | 2 | + | 4 | ( | x | + | 2 | ) | = | x | ( | x | + | 2 | ) | + | ( | x | + | 1 | ) | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
4 | x | x | + | 4 | x | × | 2 | + | 4 | ( | x | + | 2 | ) | = | x | x | + | x | × | 2 | + | ( | x | + | 1 | ) | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
4 | x | x | + | 8 | x | + | 4 | ( | x | + | 2 | ) | = | x | x | + | x | × | 2 | + | ( | x | + | 1 | ) | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
4 | x | x | + | 8 | x | + | 4 | x | + | 4 | × | 2 | = | x | x | + | 2 | x | + | ( | x | + | 1 | ) | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
4 | x | x | + | 8 | x | + | 4 | x | + | 4 | × | 2 | = | x | x | + | 2 | x | + | x | ( | x | + | 1 | ) | + | 1 | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) |
4 | x | x | + | 8 | x | + | 4 | x | + | 8 | = | x | x | + | 2 | x | + | x | ( | x | + | 1 | ) | + | 1 | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) |
4 | x | x | + | 12 | x | + | 8 | = | x | x | + | 2 | x | + | x | ( | x | + | 1 | ) | + | 1 | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) |
4 | x | x | + | 12 | x | + | 8 | = | x | x | + | 2 | x | + | x | x | + | x | × | 1 | + | 1 | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) |
4 | x | x | + | 12 | x | + | 8 | = | x | x | + | 3 | x | + | x | x | + | 1 | ( | x | + | 1 | ) | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) |
4 | x | x | + | 12 | x | + | 8 | = | x | x | + | 3 | x | + | x | x | + | 1 | x | + | 1 | × | 1 | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) |
4 | x | x | + | 12 | x | + | 8 | = | x | x | + | 3 | x | + | x | x | + | 1 | x | + | 1 | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
4 | x | x | + | 12 | x | + | 8 | = | x | x | + | 4 | x | + | x | x | + | 1 | + | ( | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | ) | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) | ( | x | + | 1 | ) |
4 | x | x | + | 12 | x | + | 8 | = | x | x | + | 4 | x | + | x | x | + | 1 | + | ( | x | + | 2 | ) | ÷ | ( | x | + | 3 | ) | × | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | ( | ( | x | + | 3 | ) | ÷ | ( | x | + | 4 | ) | ) |
Multiply both sides of the equation by: | ( | x | + | 3 | ) |
4 | x | x | ( | x | + | 3 | ) | + | 12 | x | ( | x | + | 3 | ) | + | 8 | ( | x | + | 3 | ) | = | x | x | ( | x | + | 3 | ) | + | 4 | x | ( | x | + | 3 | ) | + | x | x | ( | x | + | 3 | ) | + | 1 | ( | x | + | 3 | ) | + | ( | x | + | 2 | ) |
4 | x | x | x | + | 4 | x | x | × | 3 | + | 12 | x | ( | x | + | 3 | ) | + | 8 | = | x | x | ( | x | + | 3 | ) | + | 4 | x | ( | x | + | 3 | ) | + | x | x | ( | x | + | 3 | ) | + | 1 | ( | x | + | 3 | ) | + | ( | x | + | 2 | ) |
4 | x | x | x | + | 4 | x | x | × | 3 | + | 12 | x | ( | x | + | 3 | ) | + | 8 | = | x | x | x | + | x | x | × | 3 | + | 4 | x | ( | x | + | 3 | ) | + | x | x | ( | x | + | 3 | ) |
x1= | - | 5 2 |