Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x−40)×[300+20(60−x)] = 6120 .
    Question type: Equation
    Solution:Original question:
     ( x 40)(300 + 20(60 x )) = 6120
    Remove the bracket on the left of the equation:
     Left side of the equation = x (300 + 20(60 x ))40(300 + 20(60 x ))
                                             = x × 300 + x × 20(60 x )40(300 + 20(60 x ))
                                             = 300 x + x × 20 × 60 x × 20 x 40(300 + 20(60 x ))
                                             = 300 x + x × 1200 x × 20 x 40(300 + 20(60 x ))
                                             = 1500 x x × 20 x 40(300 + 20(60 x ))
                                             = 1500 x x × 20 x 40 × 30040 × 20(60 x )
                                             = 1500 x x × 20 x 12000800(60 x )
                                             = 1500 x x × 20 x 12000800 × 60 + 800 x
                                             = 1500 x x × 20 x 1200048000 + 800 x
                                             = 2300 x x × 20 x 60000
    The equation is transformed into :
     2300 x x × 20 x 60000 = 6120

    After the equation is converted into a general formula, it is converted into:
    ( x - 57 )( x - 58 )=0
    From
        x - 57 = 0
        x - 58 = 0

    it is concluded that::
        x1=57
        x2=58
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。