Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [X*(0.9-0.4)-(400+200+1200)]*(1-25%) = 2640 .
    Question type: Equation
    Solution:Original question:
     ( X (
9
10
2
5
)(400 + 200 + 1200))(1
25
100
) = 2640
    Remove the bracket on the left of the equation:
     Left side of the equation = X (
9
10
2
5
)(1
25
100
)(400 + 200 + 1200)(1
25
100
)
                                             = X ×
9
10
(1
25
100
) X ×
2
5
(1
25
100
)(400 + 200 + 1200)(1
25
100
)
                                             = X ×
9
10
× 1 X ×
9
10
×
25
100
X ×
2
5
(1
25
100
)(400 + 200 + 1200)(1
25
100
)
                                             = X ×
9
10
X ×
9
40
X ×
2
5
(1
25
100
)(400 + 200 + 1200)(1
25
100
)
                                             =
27
40
X X ×
2
5
(1
25
100
)(400 + 200 + 1200)(1
25
100
)
                                             =
27
40
X X ×
2
5
× 1 + X ×
2
5
×
25
100
(400 + 200 + 1200)(1
25
100
)
                                             =
27
40
X X ×
2
5
+ X ×
1
10
(400 + 200 + 1200)(1
25
100
)
                                             =
3
8
X (400 + 200 + 1200)(1
25
100
)
                                             =
3
8
X 400(1
25
100
)200(1
25
100
)1200(1
25
100
)
                                             =
3
8
X 400 × 1 + 400 ×
25
100
200(1
25
100
)1200(1
25
100
)
                                             =
3
8
X 400 + 100200(1
25
100
)1200(1
25
100
)
                                             =
3
8
X 300200(1
25
100
)1200(1
25
100
)
                                             =
3
8
X 300200 × 1 + 200 ×
25
100
1200(1
25
100
)
                                             =
3
8
X 300200 + 501200(1
25
100
)
                                             =
3
8
X 4501200(1
25
100
)
                                             =
3
8
X 4501200 × 1 + 1200 ×
25
100
                                             =
3
8
X 4501200 + 300
                                             =
3
8
X 1350
    The equation is transformed into :
     
3
8
X 1350 = 2640

    Transposition :
     
3
8
X = 2640 + 1350

    Combine the items on the right of the equation:
     
3
8
X = 3990

    The coefficient of the unknown number is reduced to 1 :
      X = 3990 ÷
3
8
        = 3990 ×
8
3
        = 1330 × 8

    We obtained :
      X = 10640
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。