Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (y-154.96)/154.96*100-(-6.81) = (y-144.41)/144.41*100 .
    Question type: Equation
    Solution:Original question:
     ( y
3874
25
) ÷
3874
25
× 100( -
681
100
) = ( y
14441
100
) ÷
14441
100
× 100
     Left side of the equation = ( y
3874
25
) ×
1250
1937
( -
681
100
)
    The equation is transformed into :
     ( y
3874
25
) ×
1250
1937
( -
681
100
) = ( y
14441
100
) ÷
14441
100
× 100
    Remove the bracket on the left of the equation:
     Left side of the equation = y ×
1250
1937
3874
25
×
1250
1937
( -
681
100
)
                                             = y ×
1250
1937
100( -
681
100
)
                                             =
1250
1937
y 100 +
681
100
                                             =
1250
1937
y
9319
100
    The equation is transformed into :
     
1250
1937
y
9319
100
= ( y
14441
100
) ÷
14441
100
× 100
     Right side of the equation = ( y
14441
100
) ×
10000
14441
    The equation is transformed into :
     
1250
1937
y
9319
100
= ( y
14441
100
) ×
10000
14441
    Remove the bracket on the right of the equation:
     Right side of the equation = y ×
10000
14441
14441
100
×
10000
14441
                                               = y ×
10000
14441
206300
2063
    The equation is transformed into :
     
1250
1937
y
9319
100
=
10000
14441
y
206300
2063

    Transposition :
     
1250
1937
y
10000
14441
y = -
206300
2063
+
9319
100

    Combine the items on the left of the equation:
      -
1318750
27972217
y = -
206300
2063
+
9319
100

    Combine the items on the right of the equation:
      -
1318750
27972217
y = -
1404903
206300

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
1404903
206300
=
1318750
27972217
y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
1318750
27972217
y =
1404903
206300

    The coefficient of the unknown number is reduced to 1 :
      y =
1404903
206300
÷
1318750
27972217
        =
1404903
206300
×
27972217
1318750

    We obtained :
      y =
39298251579951
272058125000
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。