Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.6*(1+X)/12*(1-6%)+X = 11% .
    Question type: Equation
    Solution:Original question:
     
3
5
(1 + X ) ÷ 12 × (1
6
100
) + X =
11
100
     Left side of the equation =
1
20
(1 + X )(1
6
100
) + X
    The equation is transformed into :
     
1
20
(1 + X )(1
6
100
) + X =
11
100
    Remove the bracket on the left of the equation:
     Left side of the equation =
1
20
× 1(1
6
100
) +
1
20
X (1
6
100
) + X
                                             =
1
20
(1
6
100
) +
1
20
X (1
6
100
) + X
                                             =
1
20
× 1
1
20
×
6
100
+
1
20
X (1
6
100
) + X
                                             =
1
20
3
1000
+
1
20
X (1
6
100
) + X
                                             =
47
1000
+
1
20
X (1
6
100
) + X
                                             =
47
1000
+
1
20
X × 1
1
20
X ×
6
100
+ X
                                             =
47
1000
+
1
20
X
3
1000
X + X
                                             =
47
1000
+
1047
1000
X
    The equation is transformed into :
     
47
1000
+
1047
1000
X =
11
100

    Transposition :
     
1047
1000
X =
11
100
47
1000

    Combine the items on the right of the equation:
     
1047
1000
X =
63
1000

    The coefficient of the unknown number is reduced to 1 :
      X =
63
1000
÷
1047
1000
        =
63
1000
×
1000
1047
        = 21 ×
1
349

    We obtained :
      X =
21
349
    This is the solution of the equation.

    Convert the result to decimal form :
      X = 0.060172



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。