Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation A = 29498400+665856+10000000*0.005+20000000*0.002+(A-30000000)*0.0015+(A-29498400)*0.06+0.0072*(A-29498400) .
    Question type: Equation
    Solution:Original question:
      A = 29498400 + 665856 + 10000000 ×
1
200
+ 20000000 ×
1
500
+ ( A 30000000) ×
3
2000
+ ( A 29498400) ×
3
50
+
9
1250
( A 29498400)
     Right side of the equation = 29498400 + 665856 + 50000 + 40000 + ( A 30000000) ×
3
2000
+ ( A 29498400) ×
3
50
+
9
1250
( A 29498400)
                                               = 30254256 + ( A 30000000) ×
3
2000
+ ( A 29498400) ×
3
50
+
9
1250
( A 29498400)
    The equation is transformed into :
      A = 30254256 + ( A 30000000) ×
3
2000
+ ( A 29498400) ×
3
50
+
9
1250
( A 29498400)
    Remove the bracket on the right of the equation:
     Right side of the equation = 30254256 + A ×
3
2000
30000000 ×
3
2000
+ ( A 29498400) ×
3
50
+
9
1250
( A 29498400)
                                               = 30254256 + A ×
3
2000
45000 + ( A 29498400) ×
3
50
+
9
1250
( A 29498400)
                                               = 30209256 +
3
2000
A + ( A 29498400) ×
3
50
+
9
1250
( A 29498400)
                                               = 30209256 +
3
2000
A + A ×
3
50
29498400 ×
3
50
+
9
1250
( A 29498400)
                                               = 30209256 +
3
2000
A + A ×
3
50
1769904 +
9
1250
( A 29498400)
                                               = 28439352 +
123
2000
A +
9
1250
( A 29498400)
                                               = 28439352 +
123
2000
A +
9
1250
A
9
1250
× 29498400
                                               = 28439352 +
123
2000
A +
9
1250
A
5309712
25
                                               =
705674088
25
+
687
10000
A
    The equation is transformed into :
      A =
705674088
25
+
687
10000
A

    Transposition :
      A
687
10000
A =
705674088
25

    Combine the items on the left of the equation:
     
9313
10000
A =
705674088
25

    The coefficient of the unknown number is reduced to 1 :
      A =
705674088
25
÷
9313
10000
        =
705674088
25
×
10000
9313
        = 705674088 ×
400
9313

    We obtained :
      A =
282269635200
9313
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。