Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x(1+18%)(1+5%)+38+27.8 = 827.28 .
    Question type: Equation
    Solution:Original question:
      x (1 +
18
100
)(1 +
5
100
) + 38 +
139
5
=
20682
25
     Left side of the equation = x (1 +
18
100
)(1 +
5
100
) +
329
5
    The equation is transformed into :
      x (1 +
18
100
)(1 +
5
100
) +
329
5
=
20682
25
    Remove the bracket on the left of the equation:
     Left side of the equation = x × 1(1 +
5
100
) + x ×
18
100
(1 +
5
100
) +
329
5
                                             = x × 1 × 1 + x × 1 ×
5
100
+ x ×
18
100
(1 +
5
100
) +
329
5
                                             = x × 1 + x ×
1
20
+ x ×
18
100
(1 +
5
100
) +
329
5
                                             =
21
20
x + x ×
18
100
(1 +
5
100
) +
329
5
                                             =
21
20
x + x ×
18
100
× 1 + x ×
18
100
×
5
100
+
329
5
                                             =
21
20
x + x ×
9
50
+ x ×
9
1000
+
329
5
                                             =
1239
1000
x +
329
5
    The equation is transformed into :
     
1239
1000
x +
329
5
=
20682
25

    Transposition :
     
1239
1000
x =
20682
25
329
5

    Combine the items on the right of the equation:
     
1239
1000
x =
19037
25

    The coefficient of the unknown number is reduced to 1 :
      x =
19037
25
÷
1239
1000
        =
19037
25
×
1000
1239
        = 19037 ×
40
1239

    We obtained :
      x =
761480
1239
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 614.592413



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。