Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [(x-300-4000*12%)*0.75]/800 = [(X-300)*0.75]/1000 .
    Question type: Equation
    Solution:Original question:
     (( x 3004000 ×
12
100
) ×
3
4
) ÷ 800 = (( x 300) ×
3
4
) ÷ 1000
    Remove the bracket on the left of the equation:
     Left side of the equation = ( x 3004000 ×
12
100
) ×
3
4
×
1
800
                                             = ( x 3004000 ×
12
100
) ×
3
3200
                                             = x ×
3
3200
300 ×
3
3200
4000 ×
12
100
×
3
3200
                                             = x ×
3
3200
9
32
9
20
                                             =
3
3200
x
117
160
    The equation is transformed into :
     
3
3200
x
117
160
= (( x 300) ×
3
4
) ÷ 1000
    Remove the bracket on the right of the equation:
     Right side of the equation = ( x 300) ×
3
4
×
1
1000
                                               = ( x 300) ×
3
4000
                                               = x ×
3
4000
300 ×
3
4000
                                               = x ×
3
4000
9
40
    The equation is transformed into :
     
3
3200
x
117
160
=
3
4000
x
9
40

    Transposition :
     
3
3200
x
3
4000
x = -
9
40
+
117
160

    Combine the items on the left of the equation:
     
3
16000
x = -
9
40
+
117
160

    Combine the items on the right of the equation:
     
3
16000
x =
81
160

    The coefficient of the unknown number is reduced to 1 :
      x =
81
160
÷
3
16000
        =
81
160
×
16000
3
        = 27 × 100

    We obtained :
      x = 2700
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。