Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1179*(1+x)-1503)*1.382*1.16*1.20*2.7 = 8000 .
    Question type: Equation
    Solution:Original question:
     (1179(1 + x )1503) ×
691
500
×
29
25
×
6
5
×
27
10
= 8000
     Left side of the equation = (1179(1 + x )1503) ×
1623159
312500
    The equation is transformed into :
     (1179(1 + x )1503) ×
1623159
312500
= 8000
    Remove the bracket on the left of the equation:
     Left side of the equation = 1179(1 + x ) ×
1623159
312500
1503 ×
1623159
312500
                                             =
1913704461
312500
(1 + x )
2439607977
312500
                                             =
1913704461
312500
× 1 +
1913704461
312500
x
2439607977
312500
                                             =
1913704461
312500
+
1913704461
312500
x
2439607977
312500
                                             = -
131475879
78125
+
1913704461
312500
x
    The equation is transformed into :
      -
131475879
78125
+
1913704461
312500
x = 8000

    Transposition :
     
1913704461
312500
x = 8000 +
131475879
78125

    Combine the items on the right of the equation:
     
1913704461
312500
x =
756475879
78125

    The coefficient of the unknown number is reduced to 1 :
      x =
756475879
78125
÷
1913704461
312500
        =
756475879
78125
×
312500
1913704461
        = 756475879 ×
4
1913704461

    We obtained :
      x =
3025903516
1913704461
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 1.581176



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。