Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 11.325+0.8257*(1+x)/(0.1-x)-36 = 0 .
    Question type: Equation
    Solution:Original question:
     
453
40
+
8257
10000
(1 + x ) ÷ (
1
10
x )36 = 0
     Multiply both sides of the equation by:(
1
10
x )
     
453
40
(
1
10
x ) +
8257
10000
(1 + x )36(
1
10
x ) = 0
    Remove a bracket on the left of the equation::
     
453
40
×
1
10
453
40
x +
8257
10000
(1 + x )36(
1
10
x ) = 0
    The equation is reduced to :
     
453
400
453
40
x +
8257
10000
(1 + x )36(
1
10
x ) = 0
    Remove a bracket on the left of the equation:
     
453
400
453
40
x +
8257
10000
× 1 +
8257
10000
x 36(
1
10
x ) = 0
    The equation is reduced to :
     
453
400
453
40
x +
8257
10000
+
8257
10000
x 36(
1
10
x ) = 0
    The equation is reduced to :
     
9791
5000
104993
10000
x 36(
1
10
x ) = 0
    Remove a bracket on the left of the equation:
     
9791
5000
104993
10000
x 36 ×
1
10
+ 36 x = 0
    The equation is reduced to :
     
9791
5000
104993
10000
x
18
5
+ 36 x = 0
    The equation is reduced to :
      -
8209
5000
+
255007
10000
x = 0

    Transposition :
     
255007
10000
x = 0 +
8209
5000

    Combine the items on the right of the equation:
     
255007
10000
x =
8209
5000

    The coefficient of the unknown number is reduced to 1 :
      x =
8209
5000
÷
255007
10000
        =
8209
5000
×
10000
255007
        = 8209 ×
2
255007

    We obtained :
      x =
16418
255007
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.064383



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。