Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 209.53 = 42.01+24.93x+1/2(75.81-24.93)/4.8*x2 .
    Question type: Equation
    Solution:Original question:
     
20953
100
=
4201
100
+
2493
100
x + 1 ÷ 2 × (
7581
100
2493
100
) ÷
24
5
× x × 2
     Right side of the equation =
4201
100
+
2493
100
x +
5
24
(
7581
100
2493
100
) x
    The equation is transformed into :
     
20953
100
=
4201
100
+
2493
100
x +
5
24
(
7581
100
2493
100
) x
    Remove the bracket on the right of the equation:
     Right side of the equation =
4201
100
+
2493
100
x +
5
24
×
7581
100
x
5
24
×
2493
100
x
                                               =
4201
100
+
2493
100
x +
2527
160
x
831
160
x
                                               =
4201
100
+
3553
100
x
    The equation is transformed into :
     
20953
100
=
4201
100
+
3553
100
x

    Transposition :
      -
3553
100
x =
4201
100
20953
100

    Combine the items on the right of the equation:
      -
3553
100
x = -
4188
25

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
4188
25
=
3553
100
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
3553
100
x =
4188
25

    The coefficient of the unknown number is reduced to 1 :
      x =
4188
25
÷
3553
100
        =
4188
25
×
100
3553
        = 4188 ×
4
3553

    We obtained :
      x =
16752
3553
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 4.714889



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。