Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x = (1645.4×4.23+79.76×0.89-91×11.74)/(11+1.34-6.0) .
    Question type: Equation
    Solution:Original question:
      x = (
8227
5
×
423
100
+
1994
25
×
89
100
91 ×
587
50
) ÷ (11 +
67
50
6)
     Multiply both sides of the equation by:(11 +
67
50
6)
      x (11 +
67
50
6) = (
8227
5
×
423
100
+
1994
25
×
89
100
91 ×
587
50
)
    Remove a bracket on the left of the equation::
      x × 11 + x ×
67
50
x × 6 = (
8227
5
×
423
100
+
1994
25
×
89
100
91 ×
587
50
)
    Remove a bracket on the right of the equation::
      x × 11 + x ×
67
50
x × 6 =
8227
5
×
423
100
+
1994
25
×
89
100
91 ×
587
50
    The equation is reduced to :
      x × 11 + x ×
67
50
x × 6 =
3480021
500
+
88733
1250
53417
50
    The equation is reduced to :
     
317
50
x =
14906721
2500

    The coefficient of the unknown number is reduced to 1 :
      x =
14906721
2500
÷
317
50
        =
14906721
2500
×
50
317
        =
14906721
50
×
1
317

    We obtained :
      x =
14906721
15850
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 940.487129



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。