Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 200*(1-5%)*5*(1+a%)+400*(1-10%)*5*1.2*(1+a%)*80% = 2102 .
    Question type: Equation
    Solution:Original question:
     200(1
5
100
) × 5(1 + a ) + 400(1
10
100
) × 5 ×
6
5
(1 + a ) ×
80
100
= 2102
     Left side of the equation = 1000(1
5
100
)(1 + a ) + 1920(1
10
100
)(1 + a )
    The equation is transformed into :
     1000(1
5
100
)(1 + a ) + 1920(1
10
100
)(1 + a ) = 2102
    Remove the bracket on the left of the equation:
     Left side of the equation = 1000 × 1(1 + a )1000 ×
5
100
(1 + a ) + 1920(1
10
100
)(1 + a )
                                             = 1000(1 + a )50(1 + a ) + 1920(1
10
100
)(1 + a )
                                             = 1000 × 1 + 1000 a 50(1 + a ) + 1920(1
10
100
)(1 + a )
                                             = 1000 + 1000 a 50(1 + a ) + 1920(1
10
100
)(1 + a )
                                             = 1000 + 1000 a 50 × 150 a + 1920(1
10
100
)(1 + a )
                                             = 1000 + 1000 a 5050 a + 1920(1
10
100
)(1 + a )
                                             = 950 + 950 a + 1920(1
10
100
)(1 + a )
                                             = 950 + 950 a + 1920 × 1(1 + a )1920 ×
10
100
(1 + a )
                                             = 950 + 950 a + 1920(1 + a )192(1 + a )
                                             = 950 + 950 a + 1920 × 1 + 1920 a 192(1 + a )
                                             = 950 + 950 a + 1920 + 1920 a 192(1 + a )
                                             = 2870 + 2870 a 192(1 + a )
                                             = 2870 + 2870 a 192 × 1192 a
                                             = 2870 + 2870 a 192192 a
                                             = 2678 + 2678 a
    The equation is transformed into :
     2678 + 2678 a = 2102

    Transposition :
     2678 a = 21022678

    Combine the items on the right of the equation:
     2678 a = - 576

    The coefficient of the unknown number is reduced to 1 :
      a = - 576 ÷ 2678
        = - 576 ×
1
2678
        = - 288 ×
1
1339

    We obtained :
      a = -
288
1339
    This is the solution of the equation.

    Convert the result to decimal form :
      a = - 0.215086



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。