Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.1260 = x+(x-0.053)(1.4)(1-0.24) .
    Question type: Equation
    Solution:Original question:
     
63
500
= x + ( x
53
1000
)(
7
5
)(1
6
25
)
    Remove the bracket on the right of the equation:
     Right side of the equation = x + x (
7
5
)(1
6
25
)
53
1000
(
7
5
)(1
6
25
)
                                               = x + x ×
7
5
(1
6
25
)
53
1000
(
7
5
)(1
6
25
)
                                               = x + x ×
7
5
× 1 x ×
7
5
×
6
25
53
1000
(
7
5
)(1
6
25
)
                                               = x + x ×
7
5
x ×
42
125
53
1000
(
7
5
)(1
6
25
)
                                               =
258
125
x
53
1000
(
7
5
)(1
6
25
)
                                               =
258
125
x
53
1000
×
7
5
(1
6
25
)
                                               =
258
125
x
371
5000
(1
6
25
)
                                               =
258
125
x
371
5000
× 1 +
371
5000
×
6
25
                                               =
258
125
x
371
5000
+
1113
62500
                                               =
258
125
x
7049
125000
    The equation is transformed into :
     
63
500
=
258
125
x
7049
125000

    Transposition :
      -
258
125
x = -
7049
125000
63
500

    Combine the items on the right of the equation:
      -
258
125
x = -
22799
125000

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
22799
125000
=
258
125
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
258
125
x =
22799
125000

    The coefficient of the unknown number is reduced to 1 :
      x =
22799
125000
÷
258
125
        =
22799
125000
×
125
258
        =
22799
1000
×
1
258

    We obtained :
      x =
22799
258000
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.088368



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。