Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x-30)[(40-x)X200+600] = 8400 .
    Question type: Equation
    Solution:Original question:
     ( x 30)((40 x ) x × 200 + 600) = 8400
    Remove the bracket on the left of the equation:
     Left side of the equation = x ((40 x ) x × 200 + 600)30((40 x ) x × 200 + 600)
                                             = x (40 x ) x × 200 + x × 60030((40 x ) x × 200 + 600)
                                             = x × 40 x × 200 x x x × 200 + 600 x 30((40 x ) x × 200 + 600)
                                             = x × 8000 x x x x × 200 + 600 x 30((40 x ) x × 200 + 600)
                                             = x × 8000 x x x x × 200 + 600 x 30(40 x ) x
                                             = x × 8000 x x x x × 200 + 600 x 6000(40 x ) x
                                             = x × 8000 x x x x × 200 + 600 x 6000 × 40 x
                                             = x × 8000 x x x x × 200 + 600 x 240000 x + 6000
                                             = x × 8000 x x x x × 200239400 x + 6000 x x
    The equation is transformed into :
      x × 8000 x x x x × 200239400 x + 6000 x x = 8400

    The solution of the equation:
        x1≈-0.109572 , keep 6 decimal places
        x2≈30.139915 , keep 6 decimal places
        x3≈39.969657 , keep 6 decimal places
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。