Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 20+[1-20(1/(x+32)+1/(x+12))]/(x+32)-x = 2 .
    Question type: Equation
    Solution:Original question:
     20 + (120(1 ÷ ( x + 32) + 1 ÷ ( x + 12))) ÷ ( x + 32) x = 2
     Multiply both sides of the equation by:( x + 32)
     20( x + 32) + (120(1 ÷ ( x + 32) + 1 ÷ ( x + 12))) x ( x + 32) = 2( x + 32)
    Remove a bracket on the left of the equation::
     20 x + 20 × 32 + (120(1 ÷ ( x + 32) + 1 ÷ ( x + 12))) x ( x + 32) = 2( x + 32)
    Remove a bracket on the right of the equation::
     20 x + 20 × 32 + (120(1 ÷ ( x + 32) + 1 ÷ ( x + 12))) x ( x + 32) = 2 x + 2 × 32
    The equation is reduced to :
     20 x + 640 + (120(1 ÷ ( x + 32) + 1 ÷ ( x + 12))) x ( x + 32) = 2 x + 64
    Remove a bracket on the left of the equation:
     20 x + 640 + 120(1 ÷ ( x + 32) + 1 ÷ ( x + 12)) x ( x + 32) = 2 x + 64
    The equation is reduced to :
     20 x + 64120(1 ÷ ( x + 32) + 1 ÷ ( x + 12)) x ( x + 32) = 2 x + 64
    Remove a bracket on the left of the equation:
     20 x + 64120 × 1 ÷ ( x + 32)20 × 1 ÷ ( x + 12) x ( x + 32) = 2 x + 64
    The equation is reduced to :
     20 x + 64120 ÷ ( x + 32)20 ÷ ( x + 12) x ( x + 32) = 2 x + 64
     Multiply both sides of the equation by:( x + 32)
     20 x ( x + 32) + 641( x + 32)2020 ÷ ( x + 12) × ( x + 32) x ( x + 32)( x + 32) = 2 x ( x + 32) + 64( x + 32)
    Remove a bracket on the left of the equation:
     20 x x + 20 x × 32 + 641( x + 32)2020 ÷ ( x + 12) × ( x + 32) = 2 x ( x + 32) + 64( x + 32)
    Remove a bracket on the right of the equation::
     20 x x + 20 x × 32 + 641( x + 32)2020 ÷ ( x + 12) × ( x + 32) = 2 x x + 2 x × 32 + 64( x + 32)
    The equation is reduced to :
     20 x x + 640 x + 641( x + 32)2020 ÷ ( x + 12) × ( x + 32) x = 2 x x + 64 x + 64( x + 32)
     Multiply both sides of the equation by:( x + 12)
     20 x x ( x + 12) + 640 x ( x + 12) + 641( x + 32)( x + 12)20( x + 12) = 2 x x ( x + 12) + 64 x ( x + 12) + 64( x + 32)( x + 12)
    Remove a bracket on the left of the equation:
     20 x x x + 20 x x × 12 + 640 x ( x + 12) + 641 = 2 x x ( x + 12) + 64 x ( x + 12) + 64( x + 32)( x + 12)
    Remove a bracket on the right of the equation::
     20 x x x + 20 x x × 12 + 640 x ( x + 12) + 641 = 2 x x x + 2 x x × 12 + 64 x ( x + 12) + 64
    The equation is reduced to :
     20 x x x + 240 x x + 640 x ( x + 12) + 641( x + 32) = 2 x x x + 24 x x + 64 x ( x + 12) + 64( x + 32)
    Remove a bracket on the left of the equation:
     20 x x x + 240 x x + 640 x x + 640 x = 2 x x x + 24 x x + 64 x ( x + 12) + 64( x + 32)
    Remove a bracket on the right of the equation::
     20 x x x + 240 x x + 640 x x + 640 x = 2 x x x + 24 x x + 64 x x + 64 x
    The equation is reduced to :
     20 x x x + 240 x x + 640 x x + 7680 x = 2 x x x + 24 x x + 64 x x + 768 x
    Remove a bracket on the left of the equation:
     20 x x x + 240 x x + 640 x x + 7680 x = 2 x x x + 24 x x + 64 x x + 768 x
    Remove a bracket on the right of the equation::
     20 x x x + 240 x x + 640 x x + 7680 x = 2 x x x + 24 x x + 64 x x + 768 x
    The equation is reduced to :
     20 x x x + 240 x x + 640 x x + 7680 x = 2 x x x + 24 x x + 64 x x + 768 x

    The solution of the equation:
        x1≈-32.648130 , keep 6 decimal places
        x2≈-31.383850 , keep 6 decimal places
        x3≈-11.966685 , keep 6 decimal places
        x4≈17.998666 , keep 6 decimal places
    
    There are 4 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。