Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.357/(1+1.7x)+0.0276/(1+0.12x)-0.3009/(1-0.51x) = 0 .
    Question type: Equation
    Solution:Original question:
     
357
1000
÷ (1 +
17
10
x ) +
69
2500
÷ (1 +
3
25
x )
3009
10000
÷ (1
51
100
x ) = 0
     Multiply both sides of the equation by:(1 +
17
10
x )
     
357
1000
+
69
2500
÷ (1 +
3
25
x ) × (1 +
17
10
x )
3009
10000
÷ (1
51
100
x ) × (1 +
17
10
x ) = 0
    Remove a bracket on the left of the equation::
     
357
1000
+
69
2500
÷ (1 +
3
25
x ) × 1 +
69
2500
÷ (1 +
3
25
x ) ×
17
10
x
3009
10000
÷ (1
51
100
x ) × (1 +
17
10
x ) = 0
    The equation is reduced to :
     
357
1000
+
69
2500
÷ (1 +
3
25
x ) +
1173
25000
÷ (1 +
3
25
x ) × x
3009
10000
÷ (1
51
100
x ) × (1 +
17
10
x ) = 0
     Multiply both sides of the equation by:(1 +
3
25
x )
     
357
1000
(1 +
3
25
x ) +
69
2500
+
1173
25000
x
3009
10000
÷ (1
51
100
x ) × (1 +
17
10
x )(1 +
3
25
x ) = 0
    Remove a bracket on the left of the equation:
     
357
1000
× 1 +
357
1000
×
3
25
x +
69
2500
+
1173
25000
x
3009
10000
÷ (1
51
100
x ) × (1 +
17
10
x )(1 +
3
25
x ) = 0
    The equation is reduced to :
     
357
1000
+
1071
25000
x +
69
2500
+
1173
25000
x
3009
10000
÷ (1
51
100
x ) × (1 +
17
10
x )(1 +
3
25
x ) = 0
    The equation is reduced to :
     
1923
5000
+
561
6250
x
3009
10000
÷ (1
51
100
x ) × (1 +
17
10
x )(1 +
3
25
x ) = 0
     Multiply both sides of the equation by:(1
51
100
x )
     
1923
5000
(1
51
100
x ) +
561
6250
x (1
51
100
x )
3009
10000
(1 +
17
10
x )(1 +
3
25
x ) = 0
    Remove a bracket on the left of the equation:
     
1923
5000
× 1
1923
5000
×
51
100
x +
561
6250
x (1
51
100
x )
3009
10000
(1 +
17
10
x )(1 +
3
25
x ) = 0
    The equation is reduced to :
     
1923
5000
98073
500000
x +
561
6250
x (1
51
100
x )
3009
10000
(1 +
17
10
x )(1 +
3
25
x ) = 0
    Remove a bracket on the left of the equation:
     
1923
5000
98073
500000
x +
561
6250
x × 1
561
6250
x ×
51
100
x
3009
10000
(1 +
17
10
x ) = 0
    The equation is reduced to :
     
1923
5000
98073
500000
x +
561
6250
x
28611
625000
x x
3009
10000
(1 +
17
10
x )(1 +
3
25
x ) = 0
    The equation is reduced to :
     
1923
5000
53193
500000
x
28611
625000
x x
3009
10000
(1 +
17
10
x )(1 +
3
25
x ) = 0
    Remove a bracket on the left of the equation:
     
1923
5000
53193
500000
x
28611
625000
x x
3009
10000
× 1(1 +
3
25
x )
3009
10000
×
17
10
x = 0
    The equation is reduced to :
     
1923
5000
53193
500000
x
28611
625000
x x
3009
10000
(1 +
3
25
x )
51153
100000
x (1 +
3
25
x ) = 0
    Remove a bracket on the left of the equation:
     
1923
5000
53193
500000
x
28611
625000
x x
3009
10000
× 1
3009
10000
×
3
25
x
51153
100000
= 0
    The equation is reduced to :
     
1923
5000
53193
500000
x
28611
625000
x x
3009
10000
9027
250000
x
51153
100000
x (1 +
3
25
x ) = 0

    The solution of the equation:
        x1≈-6.228580 , keep 6 decimal places
        x2≈-0.588235 , keep 6 decimal places
        x3≈0.125400 , keep 6 decimal places
        x4≈1.960784 , keep 6 decimal places
    
    There are 4 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。